Offshore Arctic Oil & Gas: Stop or Go?

3rd December 2012
James Hall
Table of Contents

I. Introduction to Infield Systems
II. The Offshore Arctic Region
III. Offshore Arctic Resources
 a) Discovered
 b) Undiscovered
IV. Key Drivers
 a) High Oil Prices
 b) Technological Developments
 c) Retreating Sea Ice
V. Offshore Arctic – Status Update
 a) Canada
 b) Greenland
 c) Norway
 d) Russia
 e) Russia (Sakhalin Island)
 f) USA (Alaska)
VI. Challenges
 a) Engineering
 b) Logistics
 c) Cost
 d) Markets
 e) Arctic Shipping
VII. Conclusion
VIII. Appendices
 a) Disclaimer
Introduction to Infield Systems

SECTION I
Geographic Locations

A globally recognised oil & gas consultancy with a dedicated international team of cross-sector specialists

Office Locations

- London
- Aberdeen
- Houston
- Singapore
- Head Office
- Regional Office
- JV/Representative Office

Visit us at booth 430

www.infield.com

34 Energy Professionals covering all geographic regions
Products & Services

A leading offshore oil and gas and associated services consultancy

<table>
<thead>
<tr>
<th>Data, Reports & GIS Mapping</th>
<th>Business Strategy and Analysis</th>
<th>Transaction Services</th>
</tr>
</thead>
</table>
| • Offshore specific data covering production infrastructure, rigs, specialist vessels, construction yards, contracts and OFS providers
 • Sector specific reports
 • GIS mapping services covering operational and forecasted production infrastructure | • Market matching and market tracking – “Match & Track”
 • Complete market intelligence outsourcing
 • Bespoke sector services
 • Market entry strategy
 • Procurement strategy advisory – “Project Flow”
 • Ad-hoc sector analysis | • Pre IPO due diligence
 • Market overview IPO
 • Debt financing analysis
 • Distressed asset purchases
 • Buy/sell side market due diligence
 • Opportunity identification |

Source: Infield Systems
The Offshore Arctic Region

SECTION II
The Arctic Region

The Arctic Circle is a vast area covering approximately 21 million square kilometres (sqkm), or 6% of the earth’s surface

- Arctic Ocean continental shelves:
 - USA (Alaska)
 - Canada (Arctic Ocean)
 - Russia
 - Norway
 - Greenland

- Additional offshore ‘sub-Arctic’ areas:
 - Russia (Sakhalin Island)
 - Canada (Newfoundland and Labrador)

- Offshore sub-Arctic areas not covered by this presentation:
 - Iceland (Jan Mayen Ridge)
 - Caspian Sea

Source: Infield Systems
Offshore Arctic Resources

SECTION III
Offshore Arctic Resources

There are 174 discovered fields in the offshore Arctic containing approximately 137 billion barrels of oil equivalent (Bboe)

- The offshore Arctic is primarily a natural gas play:
 - 116.6Bboe (85% of discovered resources) are natural gas
 - 17.2Bbbl (13%) are oil
 - 2.8Bbbl (2%) are condensates

- Discovered resources are overwhelmingly Russian (high Arctic and Sakhalin Island):
 - 83% of total resources
 - 89% of natural gas reserves
 - Large number of super-giant fields

Discovered Offshore Arctic Fields by Country

<table>
<thead>
<tr>
<th>Country</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada (Arctic Ocean)</td>
<td>33</td>
</tr>
<tr>
<td>Russia</td>
<td>23</td>
</tr>
<tr>
<td>Russia (Sakhalin)</td>
<td>19</td>
</tr>
<tr>
<td>USA (Alaska)</td>
<td>27</td>
</tr>
<tr>
<td>Norway</td>
<td>41</td>
</tr>
<tr>
<td>Canada (Arctic Ocean)</td>
<td>31</td>
</tr>
<tr>
<td>Russia</td>
<td>23</td>
</tr>
<tr>
<td>Russia (Sakhalin)</td>
<td>19</td>
</tr>
<tr>
<td>USA (Alaska)</td>
<td>27</td>
</tr>
</tbody>
</table>

Discover Natural Gas Reserves (Bcf) by Country

<table>
<thead>
<tr>
<th>Country</th>
<th>Reserves (Bcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada (Arctic Ocean)</td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>Russia (Sakhalin)</td>
<td>505,000</td>
</tr>
<tr>
<td>Russia</td>
<td>490,000</td>
</tr>
<tr>
<td>USA (Alaska)</td>
<td></td>
</tr>
</tbody>
</table>

Discover Oil Reserves (Mbbl) by Country

<table>
<thead>
<tr>
<th>Country</th>
<th>Reserves (Mbbl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada (Arctic Ocean)</td>
<td>1,950</td>
</tr>
<tr>
<td>Norway</td>
<td>75</td>
</tr>
<tr>
<td>Russia (Sakhalin)</td>
<td>4,000</td>
</tr>
<tr>
<td>Russia</td>
<td>3,750</td>
</tr>
<tr>
<td>USA (Alaska)</td>
<td>2,250</td>
</tr>
</tbody>
</table>

Source: Infield Systems
Undiscovered Resources

The USGS estimates that the onshore and offshore Arctic contains a further 412Bboe of undiscovered, technically recoverable reserves

- Approximately 84%, or 346Bboe, is thought to be offshore.
- As with discovered resources, there is a big skew towards natural gas:
 - Around 67% of undiscovered Arctic resources are thought to be natural gas, with just 22% oil and 11% NGLs.
- Russia again leads the way in undiscovered reserves:
 - West Siberian and East Barents basins contain 194Bboe, or approximately 47% of all undiscovered natural gas resources within the Arctic Circle.

Technically Recoverable Reserves (Mboe) by Type

- Natural Gas 67%
- Crude Oil 22%
- Condensate 11%

Technically Recoverable Gas Reserves (Tcf) by Region

- West Siberian Basin, 651.5
- Arctic Alaska, 221.4
- East Greenland Rift Basins, 86.18
- West Greenland-East Canada, 51.82
- Amerasia Basin, 56.89
- Yenisey-Khatanga Basin, 99.96
- Other, 183.35

Technically Recoverable Oil Reserves (Bbbl) by Region

- West Siberian Basin, 3.66
- Arctic Alaska, 29.96
- East Greenland Rift Basins, 8.9
- East Barents Basin, 7.41
- Laptev Sea Shelf, 3.12
- West Greenland-East Canada, 7.27
- Amerasia Basin, 9.72
- Yenisey-Khatanga Basin, 5.58
- Other, 14.36

Key Drivers

SECTION IV
Offshore Arctic – Key Drivers

There has been renewed interest in the offshore Arctic in recent years. This section analyses the key driving forces behind this trend, beginning with high oil prices.

- Strong oil demand growth from Asia Pacific:
 - The IEA estimates that global primary oil demand will rise by 14.6% to 99.4mnb/d 2035 (CAGR: 0.5%)
 - Asia will see most growth with demand hitting 29.9mnb/d by 2035 (CAGR: 2.1%)
- High long-term oil prices: US$100+/bbl
- Dwindling ‘easy oil’ reserves
 - IEA estimates that, by 2035, gross capacity additions of 47mn b/d will be required to maintain current production levels.

Long-Term Brent Price Scenarios

Source: Infield Systems
Offshore Arctic – Key Drivers

Natural gas price divergence between key markets will narrow but a fully traded global market remains unlikely

• Since 2000 gas demand has switched onto a steeper rising trajectory:
 - Surging demand from rapidly industrialising Asia-Pacific. Chinese consumption levels have more than tripled over the past 10 years. IEA expect Beijing’s new 12 year plan to push up gas demand by 6.7% a year to 2035 when the country’s total gas consumption could hit 500Bcm.
 - The Middle East region has seen gas consumption almost double over the past 10 years, from 20Bcf per day (Bcf/d) in 2001 to 39Bcf/d in 2011.
 - Fukushima nuclear disaster: LNG now accounts for 48% of Japan’s energy requirements, up 16% from 2010.
 - Low nuclear scenario

• Natural Gas: Asia-Pacific liquid natural gas (LNG) spot prices US$12+ per thousand cubic feet (mcf)

• Price divergence to narrow slowly from 2013:
 - Local demand dynamics
 - Global supply increases from shale gas
 - Differentials in local gas market pricing contracts

• Fully traded global gas market remains unlikely

Source: Infield Systems; BP, IEA
Offshore Arctic – Key Drivers

Factors such as rapid environmental change and improved technology are also helping to unlock new frontiers

- **Rapid environmental change:**
 - September 2012, another record: 3.6mn sqkm (NSIDC)
 - North Sea Route, North West Passage
 - No permanent ice by mid-century?
 (Maslowski & Wadhams, 2012)
 (Wang & Overland, 2009), (Stroeve & Holland, 2007)
 IPCC (AR4)

- **Technological improvements:**
 - Fully winterised, ‘ICE Class’ drilling equipment
 - 3D seismic surveying through ice, aerial surveying (openwater)
 - Improved ice monitoring technology
 - New floating production and pipeline systems

Retreating Sea Ice Extent (September Coverage)

![Graph of sea ice extent from 1979 to 2012](image)

Offshore Arctic – Status Update

SECTION V
Offshore Activity Status Update - Canada

New developments restricted to sub-Arctic or ice-free areas where operational challenges are less acute and physical isolation less severe

- High-Arctic: 41 discoveries, 0 developments
- Activity restricted to sub-Arctic Newfoundland and Labrador:
 - New licences:
 - Flemish Pass: Statoil, ConocoPhillips & Repsol (NL 11-02), Husky, Suncor & Repsol (NL 12-02)
 - Laurentian sub-basin: Royal Dutch Shell (NL 12-01)
 - Planned exploration drilling: Flemish Pass (Cupids, Harpoon) and Jeanne d'Arc basin (Searcher, Federation)
- 2013-2018: Development Capex of US$5.8bn: platform (33%) and pipeline (55%) due to isolation and iceberg prevalence

Canadian Capex (US$m) by Market Type

<table>
<thead>
<tr>
<th>Year</th>
<th>ControlLine</th>
<th>Pipeline</th>
<th>Platform</th>
<th>SubseaCompletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>3000</td>
<td>2500</td>
<td>2000</td>
<td>1500</td>
</tr>
</tbody>
</table>

Exploration

<table>
<thead>
<tr>
<th>Region</th>
<th>Operator</th>
<th>Number of Wells</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flemish Pass</td>
<td>Statoil</td>
<td>2</td>
<td>2008-2011</td>
<td>Completed</td>
</tr>
<tr>
<td>Flemish Pass/ Jeanne d'Arc Basin</td>
<td>Statoil</td>
<td>2</td>
<td>2013</td>
<td>Proposed</td>
</tr>
<tr>
<td>Jeanne d'Arc Basin</td>
<td>Statoil, Husky Energy</td>
<td>2</td>
<td>2012-2013</td>
<td>Proposed</td>
</tr>
</tbody>
</table>

Development

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Operator</th>
<th>Reserves (Mboe)</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hibernia South</td>
<td>ExxonMobil</td>
<td>267</td>
<td>2012</td>
<td>Completed</td>
</tr>
<tr>
<td>West White Rose</td>
<td>Husky Energy</td>
<td>120</td>
<td>2014</td>
<td>Proposed</td>
</tr>
<tr>
<td>Hebron</td>
<td>ExxonMobil</td>
<td>672</td>
<td>2017</td>
<td>Proposed</td>
</tr>
</tbody>
</table>

Source: Infield Systems
Offshore Activity Status Update - Greenland

Cairn Energy has led renewed interest in Greenland but none of the UK independent’s eight exploration wells have proved commercial

- **Cairn Energy’s Greenland campaign:**
 - Statoil takes 30.625% interest in Pitu block
 - Currently processing and interpreting 3D seismic data. First exploration well scheduled for 2014, subject to Government of Greenland approval.
 - Statoil to operate any future development
 - Tullow Oil farm-in to Tooq licence (evaluating seismic data)
- **Shell, Conoco and Maersk Oil** currently acquiring a combination of seismic and stratigraphic data across Melville Basin blocks.
- Two new licensing rounds covering 19 blocks in the Greenland Sea during 2012-2013.
 - 11 open only to KANUMAS* group
 - 8 blocks subject to open round

<table>
<thead>
<tr>
<th>Exploration</th>
<th>Region</th>
<th>Operators</th>
<th>Number of Wells</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baffin Bay</td>
<td>Cairn Energy</td>
<td>8</td>
<td>2010-2011</td>
<td>Completed</td>
</tr>
<tr>
<td></td>
<td>Baffin Bay</td>
<td>Cairn Energy, Statoil</td>
<td>1</td>
<td>2014</td>
<td>Proposed</td>
</tr>
</tbody>
</table>

*Notes: KANUMAS Group includes ExxonMobil, Statoil, BP, Japan National Oil Corporation (JNOC), Chevron, Royal Dutch Shell, and NUNAOIL

Source: Infield Systems
Offshore Activity Status Update - Norway

The ice-free Norwegian Barents Sea is home to the largest share of offshore Arctic exploration and development

- Two Arctic fields developed to date - Snohvit and Albatross
- Increasing exploration activity:
 - Statoil’s ‘high-impact’ Skrugard & Havis discoveries
 - Settlement of long-term maritime border dispute
 - 20th & 21st licensing rounds: 21 blocks awarded
 - Tax incentives
- 11 wildcat wells completed 2011-2012, further 9 from Statoil alone in 2012-2013
- 2013-2018: Development Capex of US$8.3bn: Large pipeline (61%), control line (11%) and subsea completion (17%) shares due to deepwaters (>300m)

Norwegian Capex (US$m) by Market

<table>
<thead>
<tr>
<th>Region</th>
<th>Operators</th>
<th>Number of Wells</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barents Sea</td>
<td>Statoil, Eni, Lundin, GDF Suez, Total, Dong</td>
<td>11</td>
<td>2011-2012</td>
<td>Completed</td>
</tr>
<tr>
<td>Barents Sea</td>
<td>Statoil</td>
<td>9</td>
<td>2012-2013</td>
<td>Proposed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Operator</th>
<th>Reserves (Mboe)</th>
<th>On-stream Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goliat</td>
<td>Eni</td>
<td>243</td>
<td>2014</td>
<td>Under development</td>
</tr>
<tr>
<td>Skrugard</td>
<td>Statoil</td>
<td>252</td>
<td>2018</td>
<td>Proposed</td>
</tr>
<tr>
<td>Havis</td>
<td>Statoil</td>
<td>252</td>
<td>2018</td>
<td>Proposed</td>
</tr>
</tbody>
</table>

Source: Infield Systems, NPD
Offshore Activity Status Update – Russia (high-Arctic)

Russia’s high-Arctic is immensely rich in resources but relatively few offshore developments have been brought to production

- High-Arctic developments:
 - Obskoye (launched 2012), Prirazlomnoye (first oil now expected H2 2013)
- The demise of Shtokman: High costs, no tax incentives, lack of markets
- Landmark ‘strategic partnership’ agreements with Rosneft:
 - ExxonMobil (Kara Sea, Black Sea)
 - Eni (Barents Sea)
 - Statoil (Barents Sea, Sea of Okhotsk)
 - Gazprom, Novatek leading exploration offshore Yamal Peninsular
- 2013-2018: Development Capex of US$3.2bn. High platform (69%) share due to very heavy ice coverage

![Russia (high-Arctic) Capex (US$m) by Market](chart.png)

Exploration

<table>
<thead>
<tr>
<th>Region</th>
<th>Operators</th>
<th>Number of Wells</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barents Sea, Pechora Sea, Black Sea, Kara Sea, Sea of Okhotsk</td>
<td>Gazprom, Rosneft (alongside ExxonMobil, Eni, Statoil)</td>
<td>N/A</td>
<td>from 2014</td>
<td>Proposed</td>
</tr>
</tbody>
</table>

Development

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Operator</th>
<th>Reserves (Mboe)</th>
<th>On-stream Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prirazlomnoye</td>
<td>Gazprom</td>
<td>848</td>
<td>2013</td>
<td>Under development</td>
</tr>
<tr>
<td>Obskoye</td>
<td>Gazprom</td>
<td>310</td>
<td>2012-2013</td>
<td>Under development</td>
</tr>
<tr>
<td>Shtokmanovskoye Phase One</td>
<td>Gazprom</td>
<td>24,060</td>
<td>N/A</td>
<td>Suspended</td>
</tr>
</tbody>
</table>

Source: Infield Systems
Offshore Activity Status Update – Russia (Sakhalin Island)

Russia’s Sakhalin Island is both rich in resources and well positioned to meet rising demand for oil and gas from Asia’s industrialising economies

- Large reserves base:
 - 8.2Bboe of discovered resources
 - Approximately 2.6Bboe to be developed by 2018: Kiriniskoye & Kiriniskoye South (Sakhalin Three) Arkutun Dagi (Sakhalin Three)
 - Sakhalin One satellites: Lebedinskoye and North Chayvo could also be brought to production by 2018

- Major source of offshore Arctic Capex:
 - 2013-2018: US$4.2bn in development spending
 - Majority platform (51%) and pipeline (43%): Isolated, ice-prone, seismically active region

<table>
<thead>
<tr>
<th>Exploration</th>
<th>Region</th>
<th>Operators</th>
<th>Number of Wells</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sakhalin Three</td>
<td>Gazprom</td>
<td>2</td>
<td>2010-2011</td>
<td>Completed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Development</th>
<th>Field Name</th>
<th>Operator</th>
<th>Reserves (Mboe)</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odoptu More (Sakhalin One)</td>
<td>ExxonMobil</td>
<td>1,156</td>
<td>2010</td>
<td>Completed</td>
</tr>
<tr>
<td></td>
<td>Kiriniskoye (Sakhalin Three)</td>
<td>Gazprom</td>
<td>708</td>
<td>2012-2013</td>
<td>Under development</td>
</tr>
<tr>
<td></td>
<td>Arkutun Dagi (Sakhalin Three)</td>
<td>Gazprom</td>
<td>1,482</td>
<td>2014</td>
<td>Under development</td>
</tr>
<tr>
<td></td>
<td>Kirinskoye South (Sakhalin Three)</td>
<td>Gazprom</td>
<td>375</td>
<td>2018</td>
<td>Proposed</td>
</tr>
</tbody>
</table>

Source: Infield Systems
Offshore Activity Status Update – USA (Alaska)

Exploration is gathering pace in Alaska’s deeper waters but developments will still be restricted to the shallow waters of the Beaufort Sea and Cook Inlet

- Exploration:
 - Royal Dutch Shell: 4 well Chukchi/Beaufort Sea campaign.
 - ConocoPhillips, Statoil to follow from 2014/2015
 - Furie Alaska: First jack-up to be deployed in >10 years
 - Apache Energy: 3D seismic survey offshore Kenai Peninsula

- New developments:

- 2013-2018: Development Capex of US$707mn: All pipeline and production platform (artificial island) investment

*Notes: Top hole drilling completed on two wells to date
Source: Infield Systems
Offshore Arctic Challenges

SECTION VI
While some developments are taking shape, the offshore Arctic remains a region of largely unrealised potential.

- Of the 174 offshore Arctic discoveries, just 69 have been brought to production to date, representing just 11% of total discovered resources
- Field development lag:
 - 13 years, third longest in the world
 - Short lag for small satellite developments
 - Particularly big lag (26 years) for fields over 1Bboe:
 - Technology catch-up
 - Capital intensity
 - Regulatory hurdles

Number of Offshore Arctic Discoveries

- **Russia (Sakhalin)**: 19
- **Norway**: 31
- **Canada**: 33
- **USA (Alaska)**: 27
- **Russia**: 23
- **Canada (Arctic Ocean)**: 41

Average Offshore Field Development Lag (Years)

- **Russia (Sakhalin)**: 25
- **Norway**: 24
- **Canada**: 12
- **USA (Alaska)**: 8
- **Russia**: 23
- **Canada (Arctic Ocean)**: 41

Source: Infield Systems
Offshore Arctic - Challenges (Engineering)

Offshore Arctic developments pose unique engineering challenges due to intense cold, ice, remoteness and even seismic activity

- Exploration
 - Arctic conditions are highly varied so exploration apparatus must be tailored accordingly
 - Ultra-harsh environments in the high-Arctic are prompting the development of bespoke drilling units.
 - New drillship/jack-up concepts
 - Specialist conversion and winterisation of existing rigs

- Post-Deepwater Horizon regulatory ‘gold standard’ in Canada, US, Greenland:
 - Double shear rams
 - Capping stack in place
 - Same season relief well capability
 - Oil spill: Early detection and rapid response capability

- Development
 - Each has unique set of engineering challenges and environmental considerations
 - Often complicated by rapidly changing environmental conditions

Sakhalin Two Development

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large winter ice-sheets</td>
<td>Four 56 X 20m concrete piles designed to withstand 30,000 tonne ice-load</td>
</tr>
<tr>
<td>Ice scour</td>
<td>Deep offshore pipeline burrial</td>
</tr>
<tr>
<td>Open water waves</td>
<td>Large platform air gap</td>
</tr>
<tr>
<td>Earthquake prone area</td>
<td>Sliding platform joints designed to withstand 8.0M tremor*</td>
</tr>
<tr>
<td>Isolation</td>
<td>Twin 800km pipeline corridor</td>
</tr>
<tr>
<td>Vulnerable Species</td>
<td>Pipeline re-routing, under-stream tunnelling, minimum platform emission</td>
</tr>
</tbody>
</table>

*Notes: Richter Scale
Source: Infield Systems; Gazprom
Offshore Arctic - Challenges (Logistics)

Offshore Arctic developments also pose unique logistical challenges due to the need for specialist drilling rigs and ICE-Class offshore support/construction vessels.

- **Exploration:**
 - Global supply of ‘harsh-environment’* drilling rigs running above demand for open water development wells.
 - Significant spare capacity for open-water exploration.

- **Development:**
 - Offshore operations require ice management from ICE Class OSVs.
 - Market well supplied with lower ICE classes, tightens from 2016 on the back of new developments.
 - Similar story with specialist pipelay vessels. Non ICE classes may be required in open waters from 2017/2018.

Supply and Demand of Available Open Water Drilling Rigs

Notes: ‘Harsh environment’ rigs refer to winterised systems capable of operating in open water Arctic or sub-Arctic conditions. Ice conditions in some areas require bespoke rig systems that are in much shorter supply. Source: Infield Systems
Offshore Arctic – Challenges (High Costs)

The technical and logistical challenges of the offshore Arctic mean that exploration and production is relatively expensive.

- **Very high costs:**
 - Cairn Energy Greenland exploration: US$1.5bn, 8 wells
 - Yamal LNG: US$18-20bn (excluding Sabetta Port & ICE-Class LNG tanker fleet)

- **Oil:**
 - Large cost range due to varied Arctic conditions
 - Some offshore Arctic oil developments viable at ‘medium oil price scenario’ **BUT**...
 - Often higher margins with most EOR, deepwater, heavy oil projects & increasing competition from tight oil
 - Bakken, Eagle Ford... Bazhenov formation

- **Natural Gas:**
 - Offshore Arctic natural gas projects increasingly vulnerable
 - New conventional resources:
 - East Africa
 - Western Australia
 - FLNG
 - Onshore Arctic more competitive?
 - Bovanenkovo, Yamal LNG
 - Chayanda & Eastern Gas Programme

Production Cost Curve

Source: Infield Systems; EIA; IEA World Energy Outlook (2008), Rosnedra
Offshore Arctic – Challenges (Unconventional Resources)

Competition from shale gas is set to have a potentially detrimental effect on the offshore Arctic

US Natural Gas Production (tcf) 1990-2035

- 97Tcf of proved shale gas reserves in US lower 48 states
- Projections indicate US shale gas output could hit 13.6Tcf, or 49% of total production by 2035 (EIA ‘Reference Case,’ 2012)
- Already hitting shallow-water Gulf of Mexico so expensive offshore Arctic developments are very unlikely to go ahead
- EIA suggests that only in their ‘Low EUR*’ scenario is an Alaskan natural gas pipeline viable
- Even in the ‘Lower EUR’ case the pipeline would not be operational before 2031

Gulf of Mexico Shallow Water Platform Installations vs. E&A Wells

- The tight oil boom has not had quite the same effect
- Just 5% of total US oil production in 2010.
- Projected to hit 1.2mn b/d, or 12% of US oil production by 2020 – just 1.3% world oil production (under IEA ‘New Policies Case,’ 2011)
- Much smaller price impact, so offshore Arctic oil projects less vulnerable
- Shutdown in North Slope production before 2035 only in EIA’s ‘Low Oil Price’ scenario

*Notes: Estimated Ultimate Recovery (EUR)
Sources: Infield Systems, EIA, IEA, Reuters, BOEMRE
Offshore Arctic – Challenges (Finding Markets)

The suspension of Shtokman has highlighted a new challenge for offshore Arctic developments - finding markets. This is a particular challenge for natural gas projects targeting the Atlantic basin.

Atlantic Basin

- Post-industrial economies: The IEA estimates that European Union gas demand will rise by just 0.8% (CAGR) to 2035
 - Eurozone debt crisis
 - European shale gas, new regasification capacity
- Shale Gas Boom:
 - US net-exporter of LNG by 2016-2017
 - Low Henry Hub prices
- Projects under particular threat:
 - Shtokman
 - Hammerfest LNG expansion
 - Mackenzie Delta Pipeline and Canadian high-Arctic fields
 - Stranded North Slope natural gas fields

Pacific Basin

- Rapidly industrialising Asian economies: The IEA estimates that non-OECD Asia gas demand will rise by 4.3% (CAGR) to 2035
- Reorientation of offshore Arctic projects:
 - Russia’s ‘Eastern Gas Programme’ Sakhalin Three and the Sakhalin-Khabarovsk-Vladivostok pipeline system
 - Yamal LNG (North Sea Route)
- USA (Alaska):
 - ExxonMobil, ConocoPhillips, BP, TransCanada: North Slope-Valdez gas pipeline and liquefaction facility

Natural Gas Price Differential

![Henry Hub - Japanese LNG Spread](image)

Source: Infield Systems
Offshore Arctic – Challenges (Arctic Shipping)

Key to that reorientation will be opening of the Northern Sea route, an important gateway to Asia for projects such as Yamal LNG and Shtokman

- The Northern Sea Route (NSR) could provide an important gateway to Asia for offshore Arctic projects.
- Year-round navigation from Dudinka to Murmansk since 1970s but only recently tanker traffic successfully traversed route.
 - Vladimir Tikhonov (Suezmax) shipped the first NSR gas condensate cargo in 2011
 - During summer 2012, the Ribera del Duero Knutsen made the NSR’s first LNG tanker transit (unloaded)
 - Finally, in November 2012, Gazprom’s ‘Ob River’ began the first NSR shipment of LNG to Japan
- NSR vital for: Yamal LNG & other future gas developments in Russia’s high-Arctic
- Northwest Passage (NWP) much more difficult route:
 - Highly seasonal with hazardous multi-year ice (3-6m)
 - Contested Sovereignty
 - Lack of escort/transhipment support

Northern Sea Route vs. Northwest Passage

<table>
<thead>
<tr>
<th>Destination</th>
<th>Distance (Nm)*</th>
<th>Speed (Kts)</th>
<th>Days*</th>
<th>Days Saved (vs. Suez Canal)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shanghai</td>
<td>6,500</td>
<td>12.9</td>
<td>21</td>
<td>-16</td>
</tr>
<tr>
<td>Bursan</td>
<td>6,050</td>
<td>12.9</td>
<td>19.5</td>
<td>-18.5</td>
</tr>
<tr>
<td>Yokohama</td>
<td>5,750</td>
<td>12.9</td>
<td>18.5</td>
<td>-20.5</td>
</tr>
</tbody>
</table>

*From Murmansk, Russia or Kirkenes, Norway

Northern Sea Route Conditions

<table>
<thead>
<tr>
<th>Season</th>
<th>Kara Sea</th>
<th>Laptev Sea</th>
<th>East Siberian Sea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>October-May</td>
<td>October-June</td>
<td>October-May/June</td>
</tr>
<tr>
<td>Average Temperature (°C)</td>
<td>-26</td>
<td>-30</td>
<td>-21</td>
</tr>
<tr>
<td>Extreme Temperature (°C)</td>
<td>-48</td>
<td>-50</td>
<td>-48</td>
</tr>
<tr>
<td>Ice thickness (m)</td>
<td>1.8-2.5</td>
<td>1.6-2.5</td>
<td>1.2-2</td>
</tr>
<tr>
<td>Summer</td>
<td>June-September</td>
<td>July-September</td>
<td>June-September</td>
</tr>
<tr>
<td>Average Temperature (°C)</td>
<td>7</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Extreme Temperature (°C)</td>
<td>20</td>
<td>26</td>
<td>30</td>
</tr>
</tbody>
</table>

Conclusions

SECTION VII
Offshore Arctic – Stop or Go?

The offshore Arctic faces an extremely uncertain future given competition from new lower-cost resources.

- Two speed Arctic
 - Oil better than gas
 - Pacific better than Atlantic
 - Sub-Arctic/ice-free areas better than high-Arctic
 - Onshore better than offshore

- High costs and struggle for markets the main challenges
 - Increasing competition from new sources

- Infield Systems have identified 38 fields that could be on-stream by 2018 but only 7 are under development or have firm plan in place. A further 7 fields are likely to be sanctioned and are therefore classified as ‘probable.’
 - The 14 fields under development, firm plan or ‘probable’ hold only 7.6Bboe, 5.5% of offshore Arctic reserves
 - Around 3% of global resources to be on-stream pre-2018

- Primarily an exploration play
- Unconventional and deepwater resources will continue to hold back developments in offshore Arctic
- Piecemeal production growth unlikely to destabilise global oil and gas markets
- Long lead times: a decade until new production

Source: Infield Systems
Appendices

SECTION VIII
The information contained in this document is believed to be accurate, but no representation or warranty, express or implied, is made by Infield Systems Limited as to the completeness, accuracy or fairness of any information contained in it, and we do not accept any responsibility in relation to such information whether fact, opinion or conclusion that the reader may draw. The views expressed are those of the individual contributors and do not represent those of the publishers.

Some of the statements contained in this document are forward-looking statements. Forward looking statements include, but are not limited to, statements concerning estimates of recoverable hydrocarbons, expected hydrocarbon prices, expected costs, numbers of development units, statements relating to the continued advancement of the industry’s projects and other statements which are not historical facts. When used in this document, and in other published information of the Company, the words such as "could," "forecast", "estimate," "expect," "intend," "may," "potential," "should," and similar expressions are forward-looking statements.

Although the Company believes that its expectations reflected in the forward-looking statements are reasonable, such statements involve risk and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements. Various factors could cause actual results to differ from these forward-looking statements, including the potential for the industry’s projects to experience technical or mechanical problems or changes in financial decisions, geological conditions in the reservoir may not result in a commercial level of oil and gas production, changes in product prices and other risks not anticipated by the Company. Since forward-looking statements address future events and conditions, by their very nature, they involve inherent risks and uncertainties.

© Infield Systems Limited 2012